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Abstract—Signaling pathways describe a group of molecules
in a cell that collaborate to control one or more cell functions,
such as cell division or cell death. The pathways communicate by
sending signals between molecules, and this process is repeated
until the terminal molecule is activated and the cell function is
executed. Signaling pathways are often represented as directed
graphs, which does not provide enough information when model-
ing cell functions and reactions. Recently, directed hypergraphs
have been proposed to more accurately represent reactions such
as protein activation and interaction. To further improve the
representation of signaling pathways, time dependency must be
considered to improve the representation of cell signaling at any
given time. In this paper, the importance of time dependency
in modeling signaling pathways is presented. An algorithm that
finds the shortest a priori path using time-dependent hypergraphs
to more robustly model signaling pathways is adopted. The
shortest time-dependent hyperpaths representing signaling path-
ways are an improvement to the recent adoption of hypergraphs
representing these pathways. The results display the improved
representation of signaling pathways and motivate the adoption
of time-dependent signaling hypergraphs.

Index Terms—Hypergraphs, systems biology, signaling path-
ways, time dependency

I. INTRODUCTION

A group of molecules in a cell work together to control cell
functions, such as cell division or cell death. This commu-
nication occurs in a signaling pathway. Once a molecule in
the pathway receives a signal, it activates another molecule.
This process is repeated until the cell function is executed.
Within signaling pathways, many reactions occur including
the activation or deactivation of proteins and complexes. The
representation of these biological pathways must consider
the complexity and time dependency of functions and reac-
tions. Recent representation methods have modeled signaling
pathways as hypergraphs [1]. A hypergraph is a graph that
can join any number of vertices, or nodes, with a single
hyperedge. Since a hypergraph can contain multiple nodes on
both the tail and head of a hyperedge, hypergraphs can model
complex networks where multiple nodes interact at once. For
example, if multiple proteins interact simultaneously, each
node representing individual proteins can be represented by a
hypernode. The adoption of hypergraph theory in cell signaling
provides a more accurate alternative in pathway analysis than
directed and undirected graphs due to the complex reactions
that occur between proteins and molecules. Hypergraphs have
been used to confront questions of pathway reconstruction,
enrichment, and crosstalk [2].

There is one clear advantage to representing signaling path-
ways with hypergraphs over graphs: convenience. A hyper-
graph can model multiple reactions occurring simultaneously
with a single hyperedge, whereas a regular graph may have to
model the complex reactions with multiple edges connecting
existing and intermediary nodes. When multiple biological
resources interact at once, hypergraphs provide a more conve-
nient representation of signaling pathways than directed and
undirected graphs. However, neither approach accounts for the
variability of time within the biological system. Thus, time-
dependent hypergraphs can more robustly model signaling
pathways. The efficiency of reactions and executed functions
occurring within signaling pathways changes throughout the
course of hours, days, and years [3]. Time-dependent hyper-
graphs can improve the robustness of pathway analysis by con-
sidering the current state of signaling pathways and accounting
for available resources. The human body experiences changes
in reactions and efficiency that are dependent on sleep, meals,
puberty, age, etc. Many biological experiences will affect cell
signaling and must be considered when analyzing signaling
pathways.

Most applications of time-dependent hypergraphs use a
time-adaptive strategy or an a priori strategy [4]. Within the
time-adaptive strategy, the hyperpath adjusts to new infor-
mation obtained while the process is executing. An a priori
strategy is a predetermined process, and the hyperpath does
not change en route. Since the signaling pathway receives a
signal and the molecular reactions execute until termination at
transcription factors, the function and reactions are predeter-
mined. However, since molecules degrade during the signaling
process, the abundance of resources may change during longer
periods of time. For larger timescales, a time-adaptive strategy
would be most appropriate. However, an a priori approach is
sufficient for typical cell communication due to the relatively
small timescale of intracellular communication [5]. Generally,
the most appropriate strategy to model signaling pathways will
be an a priori strategy.

Three contributions are provided in this paper. First, time-
dependent signaling hypergraphs are defined. Second, a pre-
existing algorithm is modified to obtain a method for comput-
ing the shortest time-dependent hyperpath. The original algo-
rithm computes the complete shortest acyclic hyperpath. The
complete shortest acyclic hyperpath would only occur given
every resource is present in the signaling pathway. However,
this is unlikely to occur, so the proposed algorithm computes
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the shortest time-dependent hyperpath, which considers the
availability of biological resources. Although atemporal data
is used in the experiment, the presence or absence of a protein
is dependent upon the state of the signaling pathway. Since
the pathway’s state is dependent upon time, the presence of
a protein is also dependent upon time. Third, it is shown
that pathway analysis becomes more robust when considering
available proteins and complexes within signaling pathways,
which are time-dependent. If time is not considered when
modeling cell communication, then the model will compute
the shortest signaling hyperpath assuming all resources are
available. Since many biological processes affect the avail-
ability of proteins, then a model that assumes all proteins
will be available is not as robust as a model that adjusts to
the availability of the pathway’s resources. Because biological
processes are dependent upon time, a model that considers
time can adjust to the availability of resources and, therefore,
provide more robust results than a model that does not consider
time.

In Section II, related research to pathway analysis with
signaling time-dependent hypergraphs is discussed. The dis-
cussed research will be related to time-dependent hypergraph
theory and algorithms as well as current methods of modeling
signaling pathways. In Section III, signaling hypergraphs,
hyperpaths, shortest hyperpaths, time-dependent hypergraphs,
and signaling time-dependent hypergraphs are defined. In
Section IV, an approach to improve the robustness of signaling
pathway analysis is discussed. Additionally, several proper-
ties and lemmas will be provided to support the proposed
method. In Section V, an algorithm modified from pre-existing
algorithms calculating the shortest signaling hyperpath and
the shortest time-dependent hyperpath is provided. In Section
VI, the experiment set-up, the datasets, and the experimental
results are discussed. In Section VII, a conclusion discusses
the findings and future work possibilities are presented.

Fig. 1. Hypernodes and hyperedges connect a starting hypernode (s)
and a destination hypernode (d). Within this hypergraph, there are
multiple hyperpaths from s to d: (1) (s, e1, u2/u4, e3, u5, e6, d), (2)
(s, e2, u3/u4, e4/e5, u6/u7, e7, d), and (3) (s, e1, u2/u8, e8, d). Of these
three hyperpaths, the third path is the shortest. Suppose u8 is not available
in the signaling pathway for cell communication. Then, the third hyperpath
cannot complete an s-d path. Either the first or second hyperpath will become
the shortest acyclic hyperpath.

II. RELATED RESEARCH

The researched topics of signaling hypergraphs, time-
dependent factors in biological systems, time-dependent hy-

pergraphs, a time-adaptive strategy, and an a priori strategy are
discussed. The strategies are in context of finding the shortest
hyperpath. The strategy that best models signaling pathways
is decided, and the adapted algorithms are explained.

Signaling hypergraphs have been proposed to model sig-
naling pathways [2] [6]. Within signaling pathways, several
reactions cannot be accurately modeled with directed graphs
due to the complex nature of these biological functions.
Directed hypergraphs can better characterize reactions that
involve multiple complexes and proteins. Some of these re-
actions include complex assembly and dissociation, protein
activation and inactivation, and combinatorial regulation. Sig-
naling hypergraphs include more information in hyperpaths
than directed graph representation, since they can represent
more than one reaction at any given time instance. There
are efforts to provide the most accurate weighted hypergraph
to model signaling pathways [7]. Hypergraph-based learning
algorithms have been proposed to classify gene expressions
[8]. There has been a recent adoption of computational
methods to systematically model the behavior of signaling
pathways due to the growing availability of experimental cell
biology data [9]. Informative proposed computational methods
include hypergraphs and shortest hyperpaths. Algorithms have
been proposed to calculate the shortest hyperpath using the
available data [6]. Properties of hypernetworks of biological
signaling pathways have been researched to improve pre-
existing algorithms [10]. The modified algorithm is based on
the latest proposed shortest signaling hyperpath algorithm [1].

Biological systems change over time. TGF-β signaling
pathways develop in embryonic development. During this
stage of development, disease processes that require TGF-
β ligands vary in efficiency [11]. Fibroblast growth factors
(FGF) are secreted molecules in embryonic development.
FGF secretion is also dependent on time [12] [13]. Intra-
cellular signaling often has time and concentration-dependent
activities. Epidermal growth factors (EGF) and Histidine-rich
glycoproteins (HRG) induce time-dependent gene expressions,
resulting in distinct cellular phenotypes in MCF-7 cells, an
isolated breast cancer cell. This EGF and HRG-induced com-
munication caused the ligand-oriented biphasic induction of
protein after twenty minutes [3]. Wnt signaling is involved
in embryonic development and controls homeostatic self-
renewal in several adult tissues. Mutations in this signaling
pathway cause several hereditary diseases and are associated
with intestinal cancer as well as cancer in other tissues.
The signal transduction of Wnt pathways varies in efficiency
depending on many factors, which includes age and available
energy [14]. Mammary gland development occurs primarily
after birth, controlled by steroid and peptide hormones. The
amount of hormones created depends on the efficiency of the
signaling pathways utilized by the mammary glands [15] [16].
The ATF6 and IRE1-XBP1 signaling pathways are important
for the refolding process of endoplasmic reticulum (ER).
The degradation of misfolded glycoprotein substrates require
transcriptional induction that is mediated by IRE1-XBP1. The
analysis of refolding ER has revealed a time-dependent transi-
tion in signaling pathways [17]. Other research papers suggest
that Toll-like receptors [18], protein-signaling networks [19],
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neurotrophic factors [20], antigen-specific immune responses
[21], regulatory networks [22], and mood modulation in the
Kinase signaling pathway are time-dependent and dynamic
systems [23]. Signaling pathways have many time-dependent
functions and reactions.

Time-dependent hypergraphs have been utilized in several
disciplines. Most recent progress made in calculating the
shortest time-dependent hyperpath has been in transportation
networks [24] [25] [26] [27]. Several algorithms have been
proposed to calculate the most reliable and robust time-
dependent hyperpath in the context of transportation [28] [29]
[30] [31]. These algorithms are based on more generalized
algorithms that find the shortest stochastic hyperpath [32] [33]
[34] or stochastic hyperpath [4] [35] [36] [37]. Although graph
parameters have been proposed, such as the hydra number,
more recent shortest time-dependent hyperpath algorithms will
be adapted for this paper.

Several strategies exist for computing the shortest time-
dependent hyperpath. Frequently adopted strategies include the
time-adaptive strategy and a priori strategy.

A time-adaptive strategy in calculating the shortest time-
dependent hyperpath is commonly used in transportation
networks and navigation applications [28] [37] [38]. As a
vehicle is en route, the navigation application collects data
and distributes this data across its users. This dispersion of
data provides a continuous update of information to users.
While en route, the navigation application may discover a new
shortest path, changing the course of navigation. In the context
of transportation, an a priori strategy determines the shortest
path before the driver leaves his/her initial position. The route
has been determined, and the driver will not change his/her
course.

Regarding signaling pathways, a time-adaptive strategy im-
plies that functions may change as reactions are executed. An
a priori strategy would mean that the biological function is
chosen before the reactions begin, and the function continues
until either executed or failed. Given that cell communication
executes specific functions, where the functions are themselves
time-dependent, the signaling pathways would be communi-
cating a predetermined function. Although the communication
may fail, the function does not change throughout the course
of cell communication. However, molecules can degrade over
longer time scales, indicating a time-adaptive strategy would
be most appropriate for large time scales [5]. Given the
relatively small timescale in cell communication, an a priori
strategy is adopted as the comprehensive strategy to calculate
the shortest time-dependent signaling hyperpath to model cell
communication.

With the wide use of pathway databases to represent cellular
processes, algorithms have been suggested to query compound
signaling graphs [39]. Alongside these algorithms, the vi-
sual language Systems Biology Graphical Notation (SBGN)
graphically represents biochemical interactions, which can
accurately depict signaling hypergraphs through its bipartite
graph-based notation [40]. Any computation performed with
hypergraphs can be performed with regular graphs, given addi-
tional node and edge types. Hypernodes can be represented by
compound nodes for use in regular graphs [39]. By introducing

dummy reaction nodes, a hyperedge e can be represented as
several connecting edges, where reaction nodes connect the
tail node to the head node. Since hyperedges can be modeled
as connecting regular edges, the theoretical hypergraph length
and graph length will differ. Although a regular graph ap-
proach can similarly model cell communication, a hypergraph
approach becomes more convenient to use in the proposed
algorithm. Thus, an algorithm to determine these hyperpaths
given the biological constraints will provide more convenient
modeling than a bipartite graphing model.

Algorithms exist for finding the shortest signaling hyperpath
and for finding the shortest time-dependent hyperpath. An
algorithm is proposed to calculate the shortest signaling time-
dependent hyperpath by adapting several algorithms to achieve
this goal [1] [28] [37]. By requiring realistic time-dependent
parameters, the proposed algorithm considers the biological
constraints during the unlikely scenario that all resources
within a signaling pathway are present.

Other research motivated our ideas includes [41]–[55].

III. DEFINITIONS

A. Signaling Hypergraphs

A hypergraph is a generalization of a graph, where an
edge can join any amount of vertices. Given the restriction to
represent signaling pathways as directed hypergraphs, future
references to directed hypergraphs, directed hyperpaths, and
directed hyperedges will simply be hypergraphs, hyperpaths,
and hyperedges, respectively. Let V be a finite set of nodes
and E be a finite set of edges.

Since many biological reactions involve protein complexes,
a set of proteins function as a single unit in a reaction.
To accurately model complexes, a definition of a hypernode
is provided as a set of nodes u ⊆ V that act together as
a single unit. A hypernode u may contain both a complex
acting as a single unit or a single node, which can represent
a single protein. The set of hypernodes will be denoted V
with the assumption that each node in V is contained in
some hypernode in V , so all nodes are accounted for in the
translation to hypernodes. A signaling hyperedge e will be a
pair (T(e), H(e)) where each member of the tail or head is a
set of hypernodes, so T (e) ⊂ V and H(e) ⊂ V . A finite set
of signaling hyperedges is denoted E . Note that a hypergraph
H is a directed graph when |T(e)| = |H(e)| = 1.

Hypergraphs can join any number of hypernodes with a
single hyperedge. For example, the hyperedge e3 in Fig. 1
connects the three hypernodes u2, u4, and u5. In this example,
T (e) = {u2, u4} and H(e) = {u5}. A hypernode may contain
multiple nodes. The hypernode u6 contains three nodes. This
property of a hypernode enables a group of proteins to be
represented as a single compound, which is important if the
compound is a reactant in biochemical reactions.

Each positive regulator is represented as a hypernode to
correctly model positive regulation. The set of hypernodes
u is added to the tail of the signaling hyperedge if u is
a positive regulator for a reaction. If all positive regulators
must be present for the reaction to execute, all regulators are
added to the tail of the signaling hyperedge. Thus, signaling
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hyperedges can represent multiple positive regulators. If any
positive regulators can initiate the reaction, a copy of the
signaling hyperedge is made for each regulator.

A signaling hypergraph is notated H = (V , E), where V is
a finite set of nodes, V ⊆ 2V is a set of hypernodes, and E is
a finite set of signaling hyperedges [2].

Signaling hypergraphs represent reactions among more than
two molecules, complexes, and combinatorial positive regu-
lations. Additionally, signaling hypergraphs can model post-
translational modifications (PTMs) and complex arrangements.
However, negative regulation and more complex regulatory
logic are not yet represented as signaling hypergraphs.

B. Hyperpaths

Many definitions of directed hypergraph paths exist [56]
[57]. One definition extends to signaling hypergraphs [1]. An
s-d path P (s, d) is an alternating sequence of hypernodes
and hyperedges starting at a hypernode s and ending at a
hypernode d where s, d ∈ V . This definition is notated

P (s, d) = (u1, e1, u2, e2, ..., uk−1, ek−1, uk), (1)

where s = u1, d = uk and for every 1 ≤ i < k, ui ∈ T (ei)
and ui+1 ∈ H(ei) [56]. An intermediary hypernode belongs
to both H(e) and T (e). A path P (s, d) is simple if it does not
contain repeated hypernodes or hyperedges. P (s, d) is a simple
cycle if u1 and uk are both in the tail of e1. The signaling
hypergraph H is acyclic if it does not contain any simple
cycles for any hypernode pair s, d ∈ V .

Simple paths do not capture all associated hypernodes
and hyperedges in the path, since simple paths report an
alternating sequence of hypernodes and hyperedges. Thus,
signaling reactions involving multiple reactants and products
are inaccurately modeled with simple paths. All reactants must
be present for all products of the signaling reaction to be
present, a notion developed in hyperpath literature [56] [57].

The set of hyperedges e for which a hypernode u ∈ V and
u ∈ H(e) is the backward star BS(u). Thus, the set BS(u)
contains all hyperedges going into u. Given a hypergraph H =
(V, E) and a hypernode s ∈ V , the hypernode u ∈ V is B-
connected to s in H if either of the following conditions are
met: (i) u = s or (ii) a hyperedge e ∈ BS(u) exists such
that for all w ∈ T (e), w is B-connected to s. The following
notation is adopted: BH(s) denotes the set of hypernodes that
are B-connected to s in H. If positive regulators are included
in the tail T (e), the definition of B-connectedness will be
modified: all reactants and positive regulators in the tail of
the reaction must be present for all products of a signaling
reaction to be present.

A sub-hypergraphH′ = (VH′ , EH′) ofH consists of subsets
of hypernodes and hyperedges that satisfy VH′ ⊆ V and EH′ ⊆
E ofH respectively, with the property that for every hyperedge
e ∈ EH′ , both T (e) and H(e) ∈ VH′ . Given two hypernodes
s, d ∈ V and a hypergraph H, an s-d B-hyperpath Π(s, d)
is a sub-hypergraph of H where d ∈ BΠ(s,d)(s) and Π(s, d)
has the deletion of all hyperedges and hypernodes that are not
necessary to keep hypernode d B-connected to hypernode s.
Thus, the hypergraph H is simplified, and d is B-connected

to s. Only the hypernodes and hyperedges in Π(s, d) must
be used to B-connect the hypernodes s and d. The set of
hypernodes B-connected to s in Π(s, d) is the same set of
hypernodes VΠ(s,d) in Π(s, d).

Several lemmas and corollaries have been provided in
hypergraph literature to reveal fundamental properties, such
as the following: if Π(s, t) is a B-hyperpath in H, then
VΠ(s,t) ⊆ BH(s). One proposed traversal algorithm identifies
the set of hypernodes that are B-connected to hypernode s
[56].

C. Shortest Hyperpath
Since there may exist many s-d routes within a hypergraph
H, there may be multiple hyperpaths in H. The objective is
to find the most efficient hyperpath, representing a minimal
amount of reactions from s-d. Adopting notation from [1], a
hyperpath Π∗(s, d) of H is computed with a minimal amount
of hyperedges:

Π∗(s, d) = argmin
Π:T∈BΠ(S)

|EΠ| (2)

All sub-hypergraphs where d is B-connected to s in Π
comprises Π; thus, this set of sub-hypergraphs contain all s-
d hyperpaths. Since reactions in signaling hypergraphs likely
involve a small number of proteins, signaling hypergraphs are
considered a special case of directed hypergraphs.

Several properties exist regarding a hyperpath Π(s, d). An
ordering exists o : V 7→ R of the hypernodes in a hypergraph
H. This function maps each hypernode in V to a real number
R. A valid ordering exists if every e ∈ E and every pair of
hypernodes u ∈ T (e) and w ∈ H(e), o(u) < o(w) [58]. Given
a valid ordering in hypergraph H = (V, E), hypergraph H is
acyclic. Given this acyclic hypergraph exists, there exists some
hypernode u ∈ V where BS(u) = ∅. Additionally, given the
hyperpath Π(s, d), s is the only hypernode where BS(s) = ∅
[1].

D. Time-dependent Hypergraphs
Given two sets of hypernodes u and w and a hyperedge

(u,w) ∈ E , the set of all possible departure times from u
to w is denoted as DT (u,w). Let DT (u) denote the set of
all possible departure times from the set of hypernodes u.
Adopting the following notation from [28], this set can be
written as DT (u) =

⋃
∀(u,w)∈E DT (u,w), where ∀w ∈ V \

{s}. Additionally, DT (w) denotes the set of all possible arrival
times at the final set of hypernodes w.

The random variable denoting the arrival time at w when
leaving from u at time t along (u,w) will be X(u,w, t). A
probability mass function can be employed on the discrete ran-
dom variable X(u,w, t) and is denoted as Pr{X(u,w, t) =
ti} = puwt(ti), such that ∀ti ∈ I(u,w, t) where I(u,w, t) =
{t1, t2, ..., tk(u,w,t)} represents the set of possible arrival times
at the set of hypernodes w when leaving u at time t along
hyperedge (u,w).

The total number of possible departure times, κ, can be
denoted by

κ =
∑

(u,w)∈E,t∈DT (u,w)

κ(u,w, t), (3)
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where κ(u,w, t) represents the path from u to w along
hyperedge (u,w) when departing at time t. Thus, κ can
represent the size of the hypergraph, or the size of the input.

An a priori strategy is defined as follows. A strategy is a
function S with domain Dm(S) ⊆ {(u, t) : u ∈ V \ {d}, t ∈
DT (u)}. This assigns each pair (u, t) ∈ Dm(S) a successor
hyperedge (u,w) ∈ FS(u), where FS(u), read ”Forward
Star,” denotes the set of all hyperedges e ∈ E such that
u ∈ T (e). This strategy must satisfy two conditions. If (u, t) ∈
Dm(S), S(u, t) = (u,w), and w = d, then t ∈ DT (u,w).
However if w 6= d, then (w, t′) ∈ Dm(S), ∀t′ ∈ I(u,w, t).
Thus, there will be multiple intervals, where t′ indicates a
departure time for the partial interval. A complete interval
from s to d can be partitioned into multiple intervals as long
as there is no wait between the intervals.

This strategy provides routing choices for departing from all
hypernodes and departing times in the domain Dm(S) towards
the destination hypernode d. Thus, any communication in
a signaling pathway leaving u at time t travels along the
hyperedge S(u, t).

It is important to note that a hypernode may contain a single
node. In this case, the proposed method can still compute the
shortest time-dependent signaling hyperpath.

E. Signaling Time-dependent Hypergraphs

By implementing the previously defined time-dependent
hypergraphs with signaling hypergraphs, time-dependent sig-
naling hypergraphs are subsequently defined. There are several
things to note.

Since biological processes are predefined and a model of
signaling pathways with a priori time-dependent hypergraphs
is chosen, the time-dependent signaling hypergraphs will
not need a time-adaptive strategy. However, time-adaptive
strategies can be implemented at the cost of computational
efficiency [4]. Within recent stochastic time-dependent hyper-
graph research, a large emphasis has been placed on time-
adaptive strategies for time-dependent hypergraphs [28] [36]
[37].

The assumption is made that departure times are positive
and that the communication in the signaling time-dependent
hypergraph cannot pause at an intermediate hypernode w.
Thus, if it is possible to arrive at hypernode w at time ti, then
it is possible to leave hypernode w at time ti. A process cannot
wait at intermediate hypernodes. Within the hypergraph model,
a hypernode can contain either a compound of many proteins
or a single protein. This flexibility allows translation from
directed graphs to hypergraphs without a loss of information.

IV. APPROACH

It is important to note several properties of time-dependent
signaling hypergraphs. To run a shortest acyclic hyperpath
algorithm, hypergraphs must have proper ordering.

Adopting several constraints from [1], binary variables αu
and αe exist for any hypernode u ∈ V and hyperedge
e ∈ E , respectively. A hypernode u is included in the sub-
hypergraph H′ if and only if αu = 1. Likewise if αe = 1, the

corresponding hyperedge e is included in H′. The following
constraints exist for the α variables:

∀u ∈ V \ {s} :

{
αu ≤

∑
e∈BS(u) αe BS(u) 6= ∅

αu = 0 otherwise
(4)

∀e ∈ E :
∑

u∈T (e)

αu ≥ |T (e)|αe (5)

∀e ∈ E :
∑

u∈H(e)

αu ≥ |H(e)|αe (6)

αt = 1 (7)

If a real-valued order variable, notated o, and α can si-
multaneously satisfy (4)-(7), then the resulting sub-hypergraph
H(α) = (V (α),V(α), E(α)) has a valid ordering, where
within any hyperedge e, the hypernodes in the head must have
an order value greater than the corresponding hypernodes in
its tail. Thus, ∀e such that αe = 1;∀(u,w) ∈ T (e) ×H(e) :
ou < ow.

A final constraint is introduced in the context of time-
dependent signaling hypergraphs. The set Pp corresponds
to the set of proteins that p can communicate with, where
p ∈ T (e) for some hyperedge e. Any given protein cannot
communicate with all proteins in a signaling pathway. There-
fore, a protein set Pp1

may include different proteins and
compounds than a second set Pp2 , implying that protein p1 can
communicate with a different set of proteins than p2. Given
a time, a protein u can communicate with a protein w along
the hyperedge e, where w ∈ Pu and (u,w) ∈ T (e) × H(e).
These stated constraints lead to the following lemma.

Lemma 1. The set of communicating proteins in H(α) form
an acyclic path along hyperpath P .

Proof. Let u be a protein in a simple cycle P =
(u1, e1, u2, ..., uk−1, ek−1, uk) where the final protein uk be-
longs to the set of tails to hypernode u1, denoted uk ∈
T (e1). Let protein w have the smallest order value, where
w = argminui∈P o(ui), and w ∈ H(e). There must exist
a protein uj , where uj ∈ T (e) since P is a simple cycle.
Thus, o(uj) < o(w), contradicting the fact that the protein
w minimizes the order function in the simple path P ; so, P
must be acyclic. Since cell communication is modeled with
shortest paths, proteins will not engage in cycles. Rather, the
proteins will communicate once along the shortest signaling
path if they are in the shortest signaling path. A protein pi must
communicate with a protein pj along hyperedge ei, such that
pj ∈ Ppi . Therefore, (pi, pj) ∈ T (ei) × H(ei). This protein
pj communicates to another protein in the simple hyperpath
P = (p1, e1, p2, ..., pk−1, ek−1, pk), where pi /∈ Ppj , since P
is acyclic. Hence, the set of communicating proteins in H(α)
form an acyclic path.

At different times, different proteins may be present within
a biological system. Thus, the protein pi must belong to the
set T (e) of the hyperedge e.
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Corollary 1. All hypernodes in a sub-hypergraph are B-
connected to hypernode s in H(α).

The following optimization problem is introduced, using
the discussed constraints adapted to time-dependent signaling
pathways from [1]:

argmin
α,o

∑
e∈E

αe, (8)

which is subject to constraints (4)-(7).
A set of a priori path-strategies is denoted S. Let L denote

the set of s-d hyperpaths in a hypergraph H(α). The set L can
be partitioned into disjoint subsets, denoted Li, where 1 ≤ i ≤
q+ 1, given a sub-hyperpath P = (s = u1, ..., uq+1). For 1 ≤
i ≤ q, paths in Li contain the path P i = (u1, ..., ui), where the
arc (ui, ui+1) is not included. However, hyperpaths in Lq+1

contain path P . This notation and the following theorem have
been adapted from [37].

Theorem 1. Given the disjoint sets Li, where 1 ≤ i ≤ q + 1,
the following statements are equivalent.

1. P ∈ Li.
2. P is a s-d hyperpath in H(α).
3. There is a unique path-strategy Si ∈ SiP corresponding

to the hyperpath P in the hypergraph H(α).

Proof. The equivalence of the first two statements follows
from the fact that P must be a hyperpath of H(α), and Li
represents disjoint subsets of H(α). If P ∈ Li, then P is
a s-d hyperpath in H(α). The equivalence of the first two
statements with the third statement follows from the one-
to-one correspondence between paths and path-strategies and
between strategies and hyperpaths.

Using this theorem, a sub-hypergraph Hi can represent
its corresponding subset Li. Thus, each sub-hypergraph Hi
defines a time-dependent hypergraph, where the set of a priori
strategies is Si and the set of path-strategies is notated as the
subset SiP ∈ Si. Thus, the following corollary is provided for
time-dependent hypergraphs.

Corollary 2. For the set of path-strategies SiP , the weight of
the best a priori strategy in Si is a lower bound.

V. ALGORITHM

The original RunMILP algorithm does not consider time
dependency for biological resources within signaling path-
ways. This algorithm’s ”shortest signaling hyperpath” is only
accurate when all proteins, enzymes, and compounds within
the signaling pathway are available. However, this is unlikely
to occur given the dynamic nature of biological systems. The
proposed algorithm considers time dependency when deter-
mining the shortest signaling hyperpath, which models cell
communication that is dependent on the realistic availability
of biological resources.

The Modified RunMILP(H,BH(s), s, d) requires a hyper-
graph, denoted H, with a starting hypernode and destination
hypernode belonging to V and the set of hypernodes that
are B-connected to the starting hypernode, including the
destination hypernode. A sub-hypergraph H′ is generated by

Algorithm 1 Modified RunMILP(H,BH(s), s, d)

Require: H,BH(s); s ∈ V, d ∈ V, d ∈ BH(s)
1: H′ = H(BH(s));
2: α, o := Solve Equation (8) on H′, s, d and t;
3: opt := |E(α)|;
4: R := ∅;
5: while |E(α)| = opt do
6: R := R ∪H(α);
7: Add constraint such that Σe∈EH′αe ≤ |E(α)|;
8: α, o := Re-solve the MILP on H′, s, and t;
9: end while

10: return R;

removing one or more proteins from the signaling pathway,
where H′ = H(BH(s)) is the induced sub-hypergraph on
the B-connected set of hypernodes (line 1). The removal of
proteins can reflect the state of a signaling pathway throughout
various biological processes. Then, α and O is solved for,
where α and o are optimal objectives, using an adopted
mixed integer linear program (MILP) from [1]. This program
optimizes Equation (8) and stores the optimal objective (lines
2-3). A set of shortest acyclic hyperpaths, R, is created and
initializes the set to be null (line 4). While the amount of
hyperedges in the hyperpath is minimal, the hyperpath is added
to R. Then, a constraint is added such that the amount of
hyperedges in the sub-hypergraph is less than or equal to the
amount of hyperedges in the optimal sub-hypergraph (lines 5-
7). Given the new constraint, the MILP is re-solved on the sub-
hypergraph and stores the new optimal objectives (line 8). Fi-
nally, the set of shortest signaling hyperpaths is returned (line
10). If multiple hyperpaths have the same optimal objective
score, the entire set of hyperpaths are returned. One example
of a tied result can be found in Table IX, where there are
two shortest signaling hyperpaths following the removal of the
Tyrosine-protein kinase LCK in the IL2 signaling pathway. All
shortest acyclic hyperpaths are plausible signaling hyperpaths
for cell communication given different time instance.

VI. EXPERIMENT

A. NCI-Pathway Interaction Database

The National Cancer Institute - Pathway Interaction
Database (NCI-PID) is a curated collection of biological data
regarding biomolecular interactions and important cellular
processes occurring in signaling pathways [59]. NCI-PID was
a collaborative project from 2006 to 2012. While listing over
200 data sets, this experiment will focus on the following four
signaling pathway data sets provided by NCI-PID: DNA-PK,
PDGFR-α, p53, and PDGFR-β1.

B. Reactome Pathway Database

Reactome is an open-source curated and peer-reviewed
pathway database founded in 2003 for the visualization, inter-
pretation, and analysis of pathway data [60]. The three selected
signaling pathways from this database are Ceramide, Ca2+,
and Purine catabolism.
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C. Pathway Commons

Pathway Commons is a web resource for biological pathway
data that integrates signaling pathways from public pathway
and interactions databases. Pathway Commons contains over
37,600 pathways and three million interactions. The following
five signaling pathways were selected from Pathway Commons
for this experiment: PDGFR-β2, IL2-mediated, Regulation of
Telome, IL2, and Gastrin CCK2R 240212.

D. Using Atemporal Data

The three databases utilized in this experiment provide
atemporal signaling pathway datasets. It would be both costly
and time-consuming for any temporal signaling pathway
dataset to be produced. To justify time dependency in the ex-
periment, several proteins were eliminated from the signaling
hypergraph. The elimination of proteins from a signaling path-
way modifies the connectivity of the network. The justification
for the removal of proteins to reflect time dependency within
the signaling hypergraph is provided below.

Many biological processes affect the availability of re-
sources. For every removed protein in the experiment, sev-
eral academic papers discuss its potential absence from the
network. Therefore, the availability of proteins are directly
affected by the biological processes occurring in the body.
For example, the absence of Telomerase reverse transcriptase
occurs following chromosomal mutation [61] and platelet-
derived growth factor proteins are not frequently activated for
adult women [62]. Since biological processes are not constant
nor are some frequent, the occurrence of these processes
change over time. Therefore, the biological processes affecting
the availability of proteins within signaling pathways are time-
dependent, and the removal of several proteins can reflect time
dependency within the pathway. Despite the atemporal nature
of the datasets available, the removal of proteins can reflect
the time-dependent nature of signaling pathways.

E. Setup

These datasets were chosen for their complete variety of size
for signaling pathways. Data used in this experiment were in
the BioPAX format [63]. This experiment utilized a modified
parser provided in PaxTools to interpret BioPAX data [64].

Extracted data from all three databases are not time-
dependent. Rather, the downloaded datasets are a complete hy-
pergraph, containing all proteins and connections between pro-
teins. Since the data is not inherently time-dependent, the sub-
hypergraphs resulting from the removal of proteins will reflect
the justified time-dependent nature of biological resources.
To more robustly model signaling pathways with respect to
the availability of biological resources, several hypernodes are
removed from the complete hypergraph, and the subsequent
sub-hypergraph BH(o) is utilized throughout the algorithm.
The removal of biological resources reflects time dependency
since every biological process degrades or activates proteins,
enzymes, and complexes. Thus, all resources will not always
be present in each signaling pathway.

Twelve signaling pathways were chosen from NCI-PID,
Reactome, and Pathway Commons to display the effect of

time dependency on signaling pathways in a variety of con-
ditions. The selected signaling pathways have a variety of
node count, hypernode count, edge count, and hyperedge
count (see Table I). Some pathways’ nodes can be greatly
condensed to hypernodes, such as the DNA-PK pathway.
Other pathways’ nodes, such as the PDGFR-β1 pathway,
cannot be greatly condensed to hypernodes. The condensing
of nodes to hypernodes occurs when a set of elements can
be represented as a single compound, where each compound
is represented as one hypernode. Likewise, some selected
pathways’ edges can be highly condensed to hyperedges, such
as the PDGFR-α pathway. Evidently, a pathway that has a
highly condensed hypernode count will likely have a highly
condensed hyperedge count.

It is important to note that the Purine catabolism signaling
pathway does not contain any complexes composed of proteins
within its pathway. Therefore, all nodes will remain as separate
nodes, which implies that all edges will remain as separate
edges. There is no translation from nodes to hypernodes or
edges to hyperedges, yet the proposed algorithm can still
determine the shortest signaling hyperpath, revealing another
robust quality of Modified RunMILP.

In preparation for the experiment, several sub-hypergraphs
were created for each signaling pathway by removing various
hypernodes that reflect reasonable variations dependent upon
time. Each of the removed hypernodes were contained in the
shortest signaling hyperpath given all resources were available.
By removing these proteins, a different hyperpath will become
the shortest signaling hyperpath, displaying the effect of time
dependency on biological resources and, consequently, cell
communication.

Before analyzing the PDGFR-β, Purine catabolism, and
Gastrin CCK2R 240212 signaling pathways, several neighbor-
ing proteins were removed to more accurately model biological
events, such as mutation, phosphorylation, and condensation
of multiple molecules. The resulting network contains a lower
level of connectivity due to the loss of neighboring hypern-
odes. Despite the removal of several neighboring hypernodes,
the proposed algorithm still computes the shortest signaling
path.

Throughout this experiment, the proposed algorithm was
implemented on a MacBook Pro operating on macOS High
Sierra with a 2.9 GHz Intel Core i7 processor. The algorithm
was run in a Jupyter Notebook using Python and the halp and
ndex packages.

F. Results and Analysis

Within each signaling hypergraph, there exists one or more
shortest paths for the entire system. If a protein or complex
within the shortest path is not present in the signaling pathway
at various time instances, then the shortest path for the entire
hypergraph will not be utilized, and a longer hyperpath will
execute the cell communication. To reveal the effect of time-
dependent resources on cell communication, only proteins that
are in the complete shortest acyclic hyperpath were removed.

To display that signaling hypergraphs are time-dependent,
several proteins were removed from the pathways, reflecting

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on March 25,2021 at 15:58:08 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2937033, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

8

TABLE I
PROPERTIES OF THE SELECTED SIGNALING PATHWAYS

Signaling Pathway Node # Hypernode # Edge # Hyperedge #

DNA-PK 14 5 66 4
PDGFR-α 26 18 43 19
p53 59 52 181 66
PDGFR-β1 139 132 1277 701
PDGFR-β2 128 77 1019 170
IL2 Mediated 55 33 619 186
Regulation of Telome 71 57 229 145
Ceramide 58 19 248 38
Ca2+ 70 55 563 346
IL2 66 15 210 27
Purine catabolism 43 43 149 149
Gastrin CCK2R 240212 136 33 251 33

that the available resources in signaling pathways are time-
dependent. A unique sub-hypergraph reflects each time in-
stance. With different sub-hypergraphs, each reduced pathway
may result in a different set of shortest acyclic hyperpaths. The
shortest acyclic hyperpath thus differs between time instances.
Additionally, these differences affect the proteins used in
cell communication and the length of the shortest signaling
hyperpath that executes the cell communication.

Although a signaling hypergraph may have many nodes, a
complex was treated as a single hypernode. Therefore, if the
signaling pathways contain many proteins, the collective nodes
were treated as a hypernode. A large amount of complexes
within a signaling pathway resulted in very limited variability
in the shortest acyclic hyperpaths for some signaling pathways
because the cardinality of the set of sub-hyperpaths is rela-
tively small. Since nodes in a complex were not independently
B-connected to the starting node in different hypergraphs, this
may result in a very limited number of possible hyperpaths.

The signaling pathways analyzed in this experiment were
selected to represent the diversity in signaling hypergraph size.
The removal of a single hypernode in a smaller hypergraph
would affect the set of hyperpaths more drastically than it
would affect a larger hypergraph’s set of hyperpaths. Since
the cardinality of the set of hyperpaths for the DNA-PK
pathway is less than that of the PDGFR-β1, it is expected
that a single missing hypernode would affect the set of B-
connected hypernodes within the DNA-PK pathway greatly,
and the length of its shortest acyclic hyperpath would not
likely be volatile. Since there is no way to alter any of the
DNA-PK shortest paths and maintain a B-connected set from
the starting hypernode to the destination hypernode, there
is only a single signaling hyperpath, and consequently one
shortest acyclic hyperpath. This is the expected result for such
a pathway as it only has pathways that was one hyperedge
long.

However, larger signaling pathways, such as the PDGFR-α
signaling pathway and p53 pathway, contain a larger set of
hyperpaths, so the removal of several hypernodes and their
respective hyperedges would not eliminate every hyperpath.
Thus, these large signaling pathways are more forgiving in
the lack of proteins present in the pathway and are more
likely to result in different sets of hyperpaths from the starting
hypernode to the destination hypernode. Although the proteins

and complexes utilized in cell communication may change,
the length of the shortest acyclic hyperpath remained relatively
constant. This can be attributed to the abundance of hyperpaths
available in the signaling hypergraph.

A table is provided for each of the twelve signaling
pathways analyzed. The effect of time dependency on these
signaling pathways can be determined by the change from
shortest path to the timed shortest path. The ”shortest path”
displays the shortest path for the complete signaling hyper-
graph, without the removal of any hypernodes. These paths
can be determined from the original RunMILP algorithm.
”Shortest path length” represents the amount of processes
that execute in the complete shortest acyclic hyperpath. The
”shortest path (timed)” displays the shortest path following
the removal of the specified hypernode in the table (”removed
hypernode”). These paths are the results from the proposed
Modified RunMILP algorithm. Likewise, the ”shortest path
length (timed)” represents the length of the newly considered
shortest path. Hypergraphs were used in the algorithm to
identify the shortest signaling hyperpath, since the length of
the entire cell communication process can be determined from
the cardinality of the set of hyperedges. However, the results
can be described in either bipartite graphs or, simply, graphs
once the shortest signaling path is known. Thus, each test
shares a single shortest signaling path in simple path form.

Since the DNA-PK signaling hypergraph has five hypern-
odes with four hyperedges, there is no variation in hyperpath
length. Thus if the starting hypernode is set as the metabolite
Inositol hexakisphosphate (IP6) and the destination hypernode
as the DNA repair gene XRCC5, there is only one possible
path for any communication to occur, which is directly be-
tween the two hypernodes (Table II).

The PDGFR-α signaling pathway has a larger set of hy-
pernodes and hyperedges, so a variety of paths can execute
functions and communications between a starting and destina-
tion hypernode (Table III). The selected starting hypernode,
Phosphatidylinositol 4,5-bisphosphate (PIP2), can utilize a
chain of PLCG1, PRRT2, and ELK1 or a chain of DAG,
PRRT2, and ELK1 to terminate at the destination hypernode,
the oncogene FOS. The removal of PLCG1 results in the
timed shortest path. Since PLCG1 is activated by the Proto-
oncogene tyrosine-protein kinase Src, it is not always present
in a signaling pathway [65]. Therefore, its removal is justified.
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Although the third and fourth hypernodes are identical in these
two paths, the second hypernode differs, displaying robustness
in the signaling pathway’s communication. At various times,
either of the interchangeable hypernodes may not be present
due to time dependency. Although both of the shortest paths
are the same length, the proteins and complexes involved
differ.

The p53 pathway, similar to the PDGFR-α signaling path-
way, has the same hyperpath length with different proteins
and complexes functioning in the hyperpath at different time
instances (Table IV). The Cyclin-A2 protein (CCNA2) is
removed to reflect different resources available at different
time instances. Levels of CCNA2 are well synchronized with
the progression of the cell cycle, so it is not atypical to see
a lack of CCNA2 in a signaling pathway during the cellular
phase G2 [66].

The PDGFR-β1 pathway is the largest signaling pathway
tested. Therefore, this pathway has the largest variety of sub-
hypergraphs and, consequently, hyperpaths. After removing
several hypernodes, the length of the shortest path between
PIP2 and phosphate increases (see Table V). Therefore, this
dataset illustrates that, due to time dependency, the pro-
teins and complexes used in the shortest acyclic hyperpath
may change and the length of the hyperpath may change
depending on which resources are available in a signaling
pathway. The removed resources are PDGFβ, PDGFRβ, CRK,
and RAPGEF1. The platelet-derived growth factor proteins,
PDGFβ and PDGFRβ, are activated when their receptor’s
kinase activity is de-repressed, which is not a frequent bi-
ological process for adult women [62]. If a woman’s cell
communication were to be modeled, the presence of PDGFβ
and PDGFRβ should likely be removed from the shortest path.
The CRK molecule is a member of an adapter protein family
that participates in the Reelin signaling cascade of DAB1. If
DAB1 is not present, which is likely to occur in the PDGFR-
β signaling pathway, then CRK will not execute in cell
communication [67]. Additionally, the nucleotide exchange
factor RAPGEF1 has a limited amount of resources that it
reacts with, where the presence of any of these resources is
time-dependent [68]. Therefore, to robustly model cell com-
munication in this pathway given its time-dependent resources,
time dependency must be considered.

The PDGFR-β2 pathway is a derivative of the same signal-
ing pathway from which the PDGFR-β1 pathway is derived.
By selecting different starting and destination hypernodes for
the PDGFR-β2 pathway, the effect of time dependency on
the shortest path length is shown to be different. In this
dataset, the stress-activated protein kinase MKK7 is removed.
Since MKK7 is activated during stressful events, it is absent
in signaling pathways quite frequently [69]. Therefore, the
removal of this protein kinase reflects real time-dependent
parameters. The removal of MKK7 causes the PDGFR-β2

pathway to change its second hypernode in the shortest path,
bypassing the now removed MKK7 hypernode (Table VI).

Although the removal of a hypernode may not affect the
shortest path’s length, it can still affect the timed shortest
path. The dual-specificity protein kinase MEK1 is removed
from the IL-2 Mediated signaling pathway and the Ceramide

pathway (Tables VII and VIII). This protein kinase requires
phosphorylation of two conserved Ser/Thr residues to become
active [70]. Since this requirement is not always satisfied, the
absence of MEK1 is expected to occur frequently in many
signaling pathways, such as the IL-2 Mediated and Ceramide
pathways. For the non-mediated IL2 signaling pathway, the
cytosol LCK is removed. LCK can be inhibited by kinase
inhibitors in the form of novel drugs [71]. These inhibitors
can treat inflammation and autoimmune disorders, and they
have become more prevalent in the biotech and pharmaceutical
industries. This hypernode is removed to reflect how some
elements within signaling pathways can become absent due
to drugs. Following the removal of this hypernode, the IL-2
pathway contains two shortest paths, labeled (1) and (2) in
Table IX. Since a tie for shortest path was obtained from the
proposed algorithm, both results are reported. If an individual
were to lack MEK1 and LCK, their cell communication’s
path would significantly differ from the shortest path provided
by currently accepted modeling techniques. Since the shortest
path for the IL-2 pathway maintains shortest path length with
different elements, the representation of its communication
is more robust, as it considers the proteins and compounds
present within an individual’s body given a specific time.

The Ca2+ pathway’s shortest path length changes when
removing the 1,2-diacyl-sn-glycerolipid C00641 (Table X).
This glycerolipid is formed by the condensation of one, two,
or three fatty acid molecules on glycerol. When fatty acids are
not present in a signaling pathway, C00641 is not activated.
Therefore, its removal is not only justified but required to
improve the robustness of modeling cell communication when
it is not active [72].

The Regulation of Telome pathway is selected for the exper-
iment to reveal how vital the existence of some elements are
to their signaling pathway. By removing Telomerase reverse
transcriptase (TERT) from this pathway, there is no destination
hypernode for the signaling hypergraph (Table XI). Therefore,
there is not a shortest path when TERT is absent in the
pathway. This absence is usually a result of chromosomal
mutation [61]. Although this mutation is not prevalent in all
individuals, it is an example of how biological systems can
mutate over time, making the resources in a signaling pathway
time-dependent.

After removing the two inosines C05512 and D00054
from the Purine catabolism pathway, the shortest path length
increases from six processes to seven processes (Table XII).
C05512 is a purine 2’-deoxyribonucleoside that is a reactant
of several enzymes. If these enzymes are not present in the
signaling pathway, which is a plausible event for many adults,
C05512 cannot execute cell communication [73]. Therefore,
this dataset exhibits how an element may be present in a
signaling hypergraph. However, it cannot be in the shortest
path since it is unable to react with available resources.

The Gastrin CCK2R 240212 pathway exhibits volatile
shortest path length through the absence of several hyper-
nodes. When removing the protein PLCG1 and the enzyme
PLA2G4A, the shortest path increases from five processes to
eight (Table XIII). As explained for the PDGFR-α pathway,
the absence of PLCG1 occurs frequently. Likewise, PLA2G4A
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is an enzyme that gets metabolized into an eicosanoid through
the release of arachidonic acid. If phospholipids are not in a
state of communicable hydrolysis, which would occur when
a salt of a weak acid or weak base is dissolved in water,
then PLA2G4A cannot get metabolized [74]. Thus, we remove
it from the signaling pathway. This is another example of
a potentially present enzyme that we cannot include in a
shortest path, simply because it cannot react or execute cell
communication. The time dependency of the proteins and
enzymes within this signaling pathway reveal that the shortest
path and cell communication are also time-dependent.

VII. CONCLUSION AND FUTURE WORK

With the recent proposal to model signaling pathways
with hypergraphs, there is a potential to improve accuracy
in modeling cell communication. Proposed hypergraph-based
algorithms more accurately reflect the complexity of signaling
pathways. However, recent literature does not account for
time dependency when analyzing signaling pathways. As with
many biological systems and processes, signaling pathways
use time-dependent biological resources to execute cell com-
munication. At different time instances, a signaling pathway
may have a different set of proteins and complexes present,
altering the pathway of cell communication. Thus, the proposal
to include time-dependent constraints when modeling cell
communication proves more robust than current modeling
techniques, since it considers the availability of biological
resources.

Through several proved lemmas and corollaries, it is evident
that a time-dependent signaling hypergraph is acyclic given a
valid ordering. Therefore, all hypernodes in a sub-hypergraph
are B-connected to a starting hypernode. These properties
were fundamental in modifying the proposed RunMILP al-
gorithm to function with time-dependent hypergraphs.

Signaling pathways were chosen from several databases:
NCI-PID, Reactome, and Pathway Commons. The selected
signaling pathways were chosen for their variety in size,
regarding both nodes and edges. After converting the BioPAX
data into hypergraphs, these selected signaling pathways fur-
ther represented a variety of sizes. While modeling smaller
signaling pathways, it was evident that the shortest path length
rarely changed. While modeling larger pathways, the length of
the shortest path and its contents differed. In both cases, the
shortest signaling hyperpath is dependent upon the available
resources. After removing several neighboring nodes in the
PDGFR-β, Purine catabolism, and Gastrin CCK2R 240212
signaling pathways, the length of the shortest path increased.

The removed hypernodes in the twelve signaling path-
ways represent realistic expectations of available resources
within each pathway at various time instances. Therefore,
the resulting sub-hypergraph can be expected to occur due
to a variety of conditions. The availability of these resources
affects the shortest path when considering time dependency.
Thus, it was shown through reasonable expectations that time-
dependent signaling hypergraphs more robustly model cell
communication.

By analyzing signaling hypergraphs a priori, the modifica-
tion of a proposed MILP algorithm was utilized to compute

the shortest B-hyperpaths within twelve signaling pathways.
By modifying each signaling pathway before computing the
shortest path, it was shown that the resulting shortest acyclic
hyperpath was dependent upon the biological resources avail-
able in the system. Thus, the robustness of modeling signaling
pathways can be improved by utilizing time-dependent signal-
ing hypergraphs.

Since each signaling pathway is in continuous flux, the
proteins and complexes present will be difficult to record. Both
tedious and costly, the measurement of available resources
within signaling pathways may not always be accessible.
Therefore, it would be difficult to curate a time-dependent
dataset of signaling pathways; however, this development
would be beneficial to the future understanding of signaling
pathways. Additionally, there can be efforts made to forecast
available proteins and complexes within specific signaling
pathways.

Since real-time transportation data is generated simulta-
neously for many users on a transportation network from
navigation applications, significant experimental data sets are
available. By integrating this experimental data with rather
complete hypergraphs, one can test many topological proper-
ties of time-dependent hypergraphs. Social media platforms
may provide additional large sets of experimental data to
integrate with hypergraphs, where hyperedges are interactions
between multiple hypernodes, or groups of users.

Although obtaining large temporal datasets may be difficult
in some fields, time-dependent hypergraphs can be applied
to a variety of domains. In neural imaging, they can model
neural oscillation and activity. In logistics, time-dependent
hypergraphs can model the coordination of people, facilities,
and supplies. In computer science, they can be applied to
several fields, such as machine learning, program optimization,
and data mining. Due to the convenience of hypergraph
properties and the influence of time on many networks, time-
dependent hypergraphs may be applied to various disciplines.
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