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ABSTRACT Many arrhythmia datasets are multimodal due to the simultaneous collection of physiological
signals of a subject. These datasets frequently have missing modalities or missing block-wise data, a
characteristic that various recent applications of neural networks fail to consider. Most arrhythmic detection
models only use electrocardiogram and blood pressure recordings. Unconsidered physiological signals may
be strongly correlated with other modalities despite havingmissing data. To improve robustness and accuracy
of heartbeat detection, all available modalities should be considered in multimodal arrhythmia datasets.
Several hybrid neural networks are proposed to robustly analyze heartbeats by considering every available
physiological signal. These networks combine elements from convolutional neural networks, recurrent neural
networks, and a deep learning architecture. This enables researchers to analyze every signal of subjects while
the set of signals collected among subjects may differ. The proposed hybrid neural networks provide more
robust results in heartbeat detection when utilizing missing data modalities.

INDEX TERMS Multimodal, heartbeat detection, deep learning, neural networks.

I. INTRODUCTION
Biological events can be documented by multiple signals, or
modalities. If multiple modalities are recorded for an event,
then the existing multimodal data may reveal characteristics
that eachmodalitymight not independently uncover. In recent
years, much attention has been placed on analyzing multi-
modal data through machine learning [1].

Many multiparameter datasets have incomplete informa-
tion in the form of missingmodalities andmissing block-wise
data. This can occurwhenmodalities are recording data at dif-
ferent times or when sensors fail to record data under certain
conditions. When some modalities have more complete data
than others, an asymmetric multimodal dataset is obtained.
Many recent methods fail to obtain accurate detection results
from these asymmetric datasets, since they do not account for
the missing data.

Multimodal medical imaging datasets frequently have
missing data. Physicians may not record every physiological
signal for every patient. Some subjects may have respiratory
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rates recorded while others will have electrocardiogram
(ECG) recordings. After appending a group of patients’ data
together, some modalities may have missing data. For exam-
ple, if three patients have ECG recordings, while four other
patients do not, an appended matrix will reveal missing data
for the ECG modality. If neural networks train on large
datasets where observations may have unique combinations
of various biometric recordings, then these neural networks
must be able to analyze modalities that have missing data.
Various mechanisms and data processing techniques have
been utilized to robustly analyze multimodal datasets with
missing data: late fusion, co-learning, orthogonal regular-
ization, probabilistic graphic models, and deep Boltzmann
machines.

In recent years, various deep learning methods have been
proposed. More frequently, neural networks, including con-
volutional neural networks (CNNs) [2], recurrent neural
networks (RNNs) [3], and modular neural networks [4],
have been used to analyze multimodal data. These artifi-
cial neural networks, inspired by biological neural networks,
learn to perform tasks through a training dataset. Once
trained, the neural networks should accurately classify inputs
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into various output categories and can be used to analyze
biometrics.

The entirety of a multimodal arrhythmia dataset should
be considered to robustly detect heartbeats. Although some
modalities may contain missing data, or somemodalities may
be missing in many observations, these physiological signals
may have a strong correlation with other signals. Alterna-
tively, some signals may be too noisy and decrease heartbeat
detection accuracy. The intrinsic structure of an arrhythmia
dataset would only be revealed through an analysis of every
modality.

Three contributions are provided in this paper. First, several
hybrid neural networks (HNNs) are proposed to analyze mul-
tiple modalities while obtaining robust results for heartbeat
detection. Second, an evaluation of the proposed HNNs on
three real-world multimodal arrhythmia datasets is provided.
Third, a comparison of CNN, CNN-Dropout, long short-term
memory (LSTM), gated recurrent unit (GRU), EmbraceNet
(EN), and the proposed HNNs is provided, along with a
discussion regarding which common physiological signals
should and should not be included in future analyses.

In Section II, related research to biometric anomaly analy-
sis, heartbeat detection, and deep learning with neural net-
works is explored. The discussed research will be related
to neural network theory and robust multimodal heartbeat
detection. In Section III, multiple HNNs are proposed to
improve the robustness of heartbeat detection with missing
multimodal data. In Section IV, the experimental set-up,
datasets, and experimental results are reported. In Section V,
a conclusion discusses the findings, and possible future work
is presented.

II. RELATED RESEARCH
Anomaly detection has been applied to many biological
domains [5]–[10]. Several papers propose the implementation
of anomaly detection within existing medical wireless sensor
networks [8], [9], while others propose to detect outliers with
medical devices [11], [12]. Since anomalies within biological
systems may be fatal, much attention has been focused on the
detection of system abnormalities.

Deep learning has been widely applied to many appli-
cations, from agriculture [13] to medical image analysis
[14], [15]. In recent years, various deep learning methods
have been proposed to analyze large datasets [16]–[18]. With
more advanced computing devices and larger datasets avail-
able, it became possible to utilize deep learning architectures
with a large number of layers [19], [20].

A. DEEP LEARNING FOR MULTIMODAL DATASETS
Often times, several biometric parameters are recorded simul-
taneously for an individual subject, generating a multimodal
dataset. Many methods have been proposed to apply neural
networks to multimodal biometric datasets [4], [21]–[28],
several of which attempted to increase robustness for mul-
timodal datasets with missing data [29]–[31].

Amultimodal ensemble-based system for emotional detec-
tion has revealed robust qualities when exploring fusion
methods for emotional recognition [29]. This technique
solves the missing data problem at the multimodal fusion
stage.

Deep Boltzmann machines are stochastic RNNs that have
been proposed for learning a generativemodel formultimodal
datasets [30]. Since most of these datasets are images, CNNs
are favored over RNNs for detecting biometric anomalies,
a noteworthy example being arrhythmia [32]. LSTMs have
produced significant results in time-series anomaly detec-
tion [33], as well as multimodal biometric anomaly detec-
tion [34]. Although GRUs have not seen many multimodal
applications, it may prove to be advantageous for smaller
datasets [35].

EN, a deep learning architecture, was designed for mul-
timodal tasks that consider cross-modal correlations while
avoiding over-fitting. Missing information in one modality
can be covered by other signals, revealing some robustness
when encountering missing modalities or block-wise missing
data [31]. Although EN reveals robust qualities when analyz-
ing multimodal datasets with missing data, the conventional
CNN demonstrates superior feature extraction for images,
while taking advantage of local spatial coherence [36].

B. DEEP LEARNING FOR HEARTBEAT DETECTION
Various neural network types have been utilized in several
disciplines. Recent progress has frequently been made in
classification and detection problems [37], [38], most promi-
nently in heartbeat detection. Many methods are used with
artificial neural networks, including multi-domain feature
extraction [36], backpropagation [39], [40], and linear and
nonlinear feature combination [41].

Substantial work has also been done in heartbeat detection
using CNNs. One significant example is found in CNN-based
generalized information fusion, which reveals the implica-
tions of using multi-channel data to increase accuracy [42].
Directly reading the multimodal data, similar to what would
be found in hospital readings, mitigates the need for inter-
mediate estimating methods like signal differencing, filter-
banks, wavelet transform, and Hilbert transform [43]–[46].
Examples of other solutions include the use of co-occurrence
matrices [47] and 3-dimensional data structures [48].

Some efforts have been made to apply a hybrid
CNN-LSTM neural network to detect biometric anomalies,
such as arrhythmia [32], [49], [50], or to detect diseases,
such as diabetes [51]. Neither of these efforts attempt to
apply a CNN-LSTM architecture to a multimodal dataset.
However in the field of gesture recognition [52], CNN-LSTM
architectures were applied to multimodal datasets.

C. DATA PRE-PROCESSING
A need for data pre-processing arises due to the existence
of noisy readings, which limits the efficiency of deep learn-
ing architectures [53]. A multitude of solutions have been
proposed, including combining finite impulse response (FIR)
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filters and principal component analysis (PCA) [54], wavelet
transform approaches [55]–[57], modified empirical mode
decomposition [58], and iterative denoising [59].

The main objective of combining FIR filters and PCA is to
minimize base line wandering, which significantly improves
accuracy. Alternatively, wavelet transform approaches aim to
change the wavelet coefficients rather than the actual base
line. However, in these approaches, the scalability is limited.
In an attempt to mitigate this, the multiple wavelets transform
theorem, based on the ideas of the single wavelet trans-
form and multi-resolution analysis, was proposed, showing
improvement upon the traditional single-wavelet transform
method.

Similarly, the modified empirical mode decomposition
method combines the empirical mode decomposition method
and the nonlocal means method to conserve the morpholog-
ical characteristics of the wavelets, while maintaining high
accuracy.

In an effort to maximize overall accuracy, an iterative
denoising method was implemented, applying every wavelet
function and possible decomposition to denoise the wavelets.
Consequently, accuracy increased at the cost of computation
speed.

III. APPROACH
To propose novel HNNs, a mathematical framework must be
provided to support the integration of the different architec-
tures. These percentages are calculated following a compari-
son of existing neural networks and the proposed HNNs, one
can determine the deep learning architectures that best han-
dle arrhythmia datasets with missing modalities or missing
block-wise data.

A. DATA PROCESSING
Although the proposed HNNs can be implemented in most
biometric applications, it is critical to correctly pre-process
the data. A generalized pre-processing technique is provided
for heartbeat analysis.

Since the physiological signals are obtained as time-series
data, non-overlapping windows of the samples are scaled by
the maximum magnitude. Additionally, normalizing physio-
logical data increases learning speed and decreases conver-
gence time. Missing values were filled with the mean of their
neighboring values. All signals were resampled to 250Hz and
normalized to a range of [0,1].

Each HNN is optimized with its weights throughout the
training and validation phases using cross-validation for each
dataset. In an effort to provide the most rigorous analysis of
the proposed HNNs, cross validation is implemented on the
training set.

Snippets are generated from the biometric samples by
moving a window of l length one sample at a time, where l
can be selected based on the physiological signals analyzed.
The value of l can be generalized to a length of 251 for most
arrhythmia detection applications. The generated snippets are
used to train and optimize the presented neural architectures.

B. ACTIVATION FUNCTIONS
Most recent attempts to determine heartbeat location use the
logistic sigmoid activation function σ (x) = 1

1+e−x , which
outputs data between [0,1] [42], [60]. This activation func-
tion’s derivative, dσ

dx =
e−x

(1+e−x )2
, centers the data at 0.

However, the tanh activation function, tanh = 2σ (2x) − 1,
avoids bias in convolutional gradients. Additionally, tanh
accomplishes the same goal as the logistic sigmoid, since
d(tanh)
dx =

4e−2x

(e−2x+1)2
. The rectified linear units (ReLU) activa-

tion function, f (x) = max(0, x), and leaky ReLU activation
function, g(x) = max(αx, x), have gained attention in recent
research, where α is a small constant (i.e. 0.1). These four
activation functions are used throughout the experiment.

Although previous attempts at detecting heartbeats utilize
a logistic sigmoid nonlinearity in the fully connected net-
work, the hyperbolic tangent nonlinearity, ReLU, or leaky
ReLU are tested with the proposed HNNs. The sigmoid
nonlinearity is not sensitive with values close to 0 or 1.
Additionally, it is hard to initialize weights of sigmoid neu-
rons to prevent saturation. If weights are slightly large, the
neural network may have difficulties learning. Finally, the
sigmoid activation is not zero-centered, which is critical if
a neural network will operate on more than one convolution
layer.

C. CONVOLUTIONAL NEURAL NETWORKS
Simultaneously, K physiological signals are recorded for
a subject from time t1 to time t2, denoted x(i)t1:t2 where
1 ≤ i ≤ K . Since multimodal datasets are analyzed, K ≥ 2.
Like many neural networks, CNNs can systematically fuse

information from multiple signals by adding convolution
layers between the input layer and the output layer. With K
signals, each filter contains K one-dimensional component
filters with a common length L. The desired feature set, or
overall filter output, is generated by summing these com-
ponent filter outputs. By assuming p filters, the coefficients
of the k-th channel of the j-th filter is denoted {h(k,j)l }

L−1
l=0 ,

where 1 ≤ k ≤ K and 1 ≤ j ≤ p. The corresponding
filter output is denoted y(k,j)n = 6L−1

l=1 x
(k)
n−lh

(k,j)
l . By summing

all channels, the overall output of the j-th filter is obtained:
y(j)n = 6K

k=1y
(k,j)
n .

At a given start time t , a window of lengthM of the signal
vector x(k)t:t+M−1 for the k-th channel is considered. Without
zero-padding, a relatively short filter can produce a larger
number of outputs than a long filter, which would improve
accuracy for smaller datasets. To avoid zero-padding, the j-th
filter output y(j)n is obtained for n = t+L−1, · · · , t+M−1.
This results inM−L+1 samples. The length of the produced
feature vector for all filters is p(M − L + 1).
The filter coefficients and network weights were opti-

mized using back propagation under the cross-entropy loss
function

L (X ,Y ) = −
1
n
6n
i=1y

(i) ln a(x(i))+(1− y(i)) ln(1− a(x(i)))

(1)

VOLUME 8, 2020 82203



M. R. Schwob et al.: Robust Multimodal Heartbeat Detection Using HNNs

where X = {x(1), · · · , x(n)} is the set of input examples in
the training dataset, Y = {y(1), · · · , y(n)} is the corresponding
label set for those input examples, and a(x) is the output of
a given input x. Throughout the experiments, label 1 will be
used for inputs that are determined a heartbeat and the label
0 will denote the absence of a heartbeat. The values of a(x)
are computed through one of the following functions:

a1(x) =
1

1+ e−(Wx+b)
(2)

a2(x) =
2

1+ e−2(Wx+b)
− 1, (3)

a3(x) = max(0,Wx + b), (4)

a4(x) = max(αx,Wx + b), (5)

whereW is a weight matrix, b is a bias vector, and α is a small,
positive constant. The functions a1(x), a2(x), a3(x), and a4(x)
are the logistic sigmoid, hyperbolic tangent, ReLU, and leaky
ReLU activation functions, respectively. Since many arrhyth-
mia datasets contain more than two physiological signals, the
proposed HNNs may use multiple layers. If two layers are
used, the activation functions can be expanded to

a1(x) =
1

1+ e−(Wz1(x)+b)
, (6)

a2(x) =
2

1+ e−2(Wz2(x)+b)
− 1, (7)

a3(x) = max(0,Wz3(x)+ b), (8)

a4(x) = max(αz4(x),Wz4(x)+ b), (9)

where z1(x) = 1
1+e−(Vx+c)

, z2(x) = 2
1+e−2(Vx+c)

− 1, z3(x) =
max(0,Vx+c), z4 = max(αx,Vx+c), V is the weight matrix
for the first layer, c is the bias vector for the first layer, and
zi(x) for i = 1, 2, 3, 4 is the activation layer of the hidden
layer. If multiple hidden layers exist, this process is repeated.

D. LONG SHORT-TERM MEMORY
One of the more popular RNNs for biometric analysis is
the LSTM. This model is trained to reconstruct the normal
time-series data inherent in the physiological recordings. Any
reconstruction errors are used to obtain the likelihood of a
point denoting a heartbeat. Since LSTM units do not perform
activation, the same physiological signals can flow through
the neural network for an arbitrarily long period of time. This
characteristic enables LSTMs to represent time series, where
the interaction between past and present data is sensitive to
distant and recent events [61].

The jth unit of a LSTM maintains a memory cjt at time
t . The output of the jth unit is hjt = ojtσ (c

j
t ), where o

j
t is

an output gate modulating the amount of content exposure
for the memory and σ (·) is an activation function. Given a
sequence x = (x1, x2, · · · , xr ), this gate is computed as

ojt = σ (Woxt + Uoht−1 + Voct )j, (10)

whereW and U are weight matrices, ht is the model’s recur-
rent hidden state at time t , and Vo is a diagonal matrix.

The memory cjt is updated by adding a temporary mem-
ory cj

′

t after partially forgetting the existing memory, where
cj
′

t = σ (Wcxt + Ucht−1)j. The extent of the temporary
loss of the existing memory is controlled by a forget gate
f jt = σ (Wf xt + Uf ht−1 + Vf ct−1)j. The extent to which the
new memory content is added to cjt is modulated by an input
gate ijt = σ (Wixt + Uiht−1 + Vict−1)j. Similar to the output
gate, Vf and Vi are diagonal matrices. An LSTM unit uses
these gates to determine whether the existing or new memory
content carries more information in feature extraction. If an
LSTMmodel detects an important feature early in the training
stage, its unit carries this information throughout the training,
thereby capturing potential long-distance dependencies.

E. GATED RECURRENT UNIT
In recent years, GRUs, a modified LSTM, have been pro-
posed, which allows each unit to adaptively capture depen-
dencies on different time scales [62]. GRUs do not separate
memory cells whenmodulating the flow of information inside
each recurrent unit.

When working on less training data, GRUs train faster
and perform better on testing data than LSTMs. Due to the
simplicity of GRUs, they compute much more efficiently
[63]. However, LSTMs can remember longer sequences than
GRUs andmore accurately model long-distance relationships
[61], [64].

For a GRU, the activation hjt = (1−zjt )h
j
t−1+z

j
th
j′
t acts as a

linear interpolation between the previous activation hjt−1 and

the new activation hj
′

t = σ (Wxt +U (rt � ht−1))j, where rt is
a set of reset gates. The update gate zjt = σ (Wzxt + Uzht−1)j

determines how much of the unit is updated.
When r jt ≈ 0, the reset gate forces the recurrent unit to

forget the previously computed state. Similar to the update
gate, r jt = σ (Wrxt + Urht−1)j.
One key difference between the LSTM and GRU unit is

that the GRU unit does not have a mechanism to control the
degree of exposure for the unit’s state; instead, the GRU unit
exposes the state entirely at any given time.

F. EmbraceNet
The deep learning architecture EN has the robust quality
of dealing with missing data [31]. Assuming there exists K
physiological signals with corresponding neural networks,
let x(k) be the output vector from the k-th neural network,
where k ∈ {1, 2, · · · ,K }. Through the use of docking layers,
EN converts each input vector into vectors of the same size.
The i-th component of the k-th docking layer is denoted
z(k)i = w(k)

i · x
(k)
+ b(k)i , wherew(k)

i is a weight vector and b(k)i
is a bias vector. An activation function is applied to z(k)i to
obtain the output of the k-th docking layer, d (k)i = fa(z

(k)
i ),

where d (k) = [d (1)1 , d (1)2 , · · · , d (k)c ] and c is the dimension
of all docked vectors. With the K vectors of dimension c
obtained from the docking layers, EN combines these vectors
into an embraced vector.
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The fusion technique of the K docking vectors uses a
multinomial sampling, where ri = [r (1)i , r (2)i , · · · , r (K )

i ]T is a
vector drawn from amultinomial distribution (i.e. ri ∼Multi-
nomial(1, p)), where p = [p1, p2, · · · , pm]T and 6kpk = 1.
From these constraints, one value of ri will equal 1 with the
remaining values equal to 0. Thereafter, the vector d ′(k) =
[d ′(k)1 , d ′(k)2 , · · · , d ′(k)c ]T = r (k) ◦ d (k) is obtained from a
Hadamard product, where r (k) = [r (k)1 , r (k)2 , · · · , r (k)c ]T . The
embracement layer e = [e1, e2, · · · , ec]T is calculated such
that ei = 6kd

′(k)
i . This procedure is outlined in Algorithm 1.

Algorithm 1 EmbraceNet
Require: m neural network output vectors, fa
1: x(k) := kth model output vector, where 1 ≤ k ≤ m
2: w(k)

i := weight vector for the ith component of the kth
model

3: b(k)i := bias vector for the ith component of the kth model
4: fa := non-linearity
5: for 1 ≤ i ≤ c do
6: z(k)i = w(k)

i · x
(k)
+ b(k)i

7: d (k)i = fa(z
(k)
i )

8: end for
9: d (k) = [d (k)1 , d (k)2 , · · · , d (k)c ]T

10: for 1 ≤ i ≤ c do
11: ri ∼Multinomial(1, p)
12: end for
13: d ′(k) = r (k) ◦ d (k)

14: for 1 ≤ i ≤ c do
15: ei = 6kd

′(k)
i

16: end for
17: return e = [e1, e2, · · · , ec]T

This process ensures that one physiological signal con-
tributes to each component of the vector e. Through the
modality selection process, the output of EN is generated
from data of all signals. The selection process depends on
the values of p. In cases where little to no data is missing,
p = [1/K , 1/K , · · · , 1/K ]T gives an equal chance for all
physiological signals to be selected.

However, arrhythmia datasets often have missing modal-
ities or missing block-wise data. In this case, the probabil-
ities p are adjusted. Let u = [u1, u2, · · · , uK ]T indicate
the presence of each signal, where uk = 1 if x(k) exists
and 0 otherwise. The multinomial distribution is adjusted by
changing p to p̂ = [p̂1, p̂2, · · · , p̂K ]T , where p̂k =

ukpk
6jujpj

.
If the k-th signal is not available, uk = 0 and p̂k = 0,
eliminating the chance for that value of r (k)i to become 1.
This prevents invalid data coming from the k-th physiological
signal to propagate to the EN output.

G. HYBRID NEURAL NETWORKS
Recent attempts at detecting heartbeats make use of two phys-
iological signals, or channels: ECGs and blood pressure (BP).
An analysis of these two modalities is a bimodal approach.
The proposed HNNs can accurately analyze many channels.

FIGURE 1. Diagram of the proposed CNN-LSTM-EN neural architecture.

Since the proposed architectures are not restricted to uni-
modal or bimodal datasets, they may contain more than one
convolution layer. Additionally, many arrhythmia datasets
contain missing data, which deters a multimodal (K > 2)
approach to analyze the data.

A combination of neural network architectures may reveal
a more robust approach to analyzing datasets that have miss-
ing data for heartbeat detection; due to the rhythmic nature
of this detection and the necessity for quality feature extrac-
tion with missing data, a single neural network may not be
advantageous. It is for this reason that many researchers are
implementing HNNs like CNN-LSTM and CNN-GRU in
multimodal datasets.

CNNs are ideal when data is periodically sampled in one
or more dimensions, which is the most common occurrence
for arrhythmia data. LSTMs are useful when the data dis-
play a periodic rhythm and can return accurate results when
detecting heartbeats. GRUs provide the benefits of LSTMs
on smaller datasets. The benefit of EN arises when datasets
have missing modalities or missing block-wise data, which is
a common occurrence for the volatile nature of physiologi-
cal recordings. Therefore, combinations of these four neural
architectures may provide accurate, robust results. HNNs can
incorporate many channel signals by CNN, LSTM, or GRU
and feed these channels into the EN for final prediction. A
diagram of the proposed CNN-LSTM-EN neural network is
provided in Figure 1.

An explanation of the CNN-LSTM-EN is provided first,
since it is the most involved neural network alongside the
CNN-GRU-EN architecture. Note that since a GRU is a
modified LSTM, the CNN-GRU-EN is similarly constructed
to the CNN-LSTM-EN.

Since CNNs read periodically sampled data well, this
neural network will be the first architecture in the pro-
posed CNN-LSTM-ENmodel, leveraging its superior feature
extraction over the other neural architectures. The benefit
of including an LSTM in an HNN is that LSTMs can best
analyze periodic data. EN is the last architecture since it
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requires periodically analyzed data to adjust the probabili-
ties p̂ before attempting to detect heartbeats in the arrhyth-
mia data. This same reasoning justifies the structure of the
existing hybrid network CNN-LSTM, where the LSTM is
the architecture that classifies heartbeat location rather than
an EN.

Typically, a CNN’s probability vector pcnn is generated
prior to data classification. In the CNN-LSTM-EN neural
architecture, the dense layer of the ith modality is an LSTM,
where i ∈ {1, 2, · · · ,m}. Following the feature extrac-
tion of the convolution layers in the m CNN architectures,
the LSTM will produce a probability vector pl that deter-
mines the probabilities of points denoting heartbeats, where
l ∈ {1, 2, · · · ,m}. Rather than executing the classification
process after the dense layer, pl will become the input to the
EN. An EN will take the m probability vectors as the input
vectors, where the docking layers are computed as

z(k)l = w(k)
l · p

(k)
+ b(k)i . (11)

Thereafter, the EN architecture will compute more robust
results by adapting the probabilistic distributions of the avail-
able data and then classifying heartbeat locations.

For the CNN-LSTM and CNN-LSTM-EN neural net-
works, the CNN architecture conducts the feature extraction.
The extracted features become the input for the LSTMmodel.
This is advantageous since the CNN extracts features from
the arrhythmia data with accuracy while the LSTM detects
arrhythmic anomalies following the CNN’s feature extrac-
tion. The CNN-EN architecture operates similarly to the
CNN-LSTM-EN,where them probability vectors of the CNN
models become the input vectors for the EN architecture.

As a modified LSTM, GRUs can also detect arrhythmic
conditions following the implementation of a CNN. There-
fore, CNN-GRU and CNN-GRU-EN models are examined
throughout the experiment. Although LSTM-EN and GRU-
EN models cannot leverage the periodic sampling technique
and feature extraction of CNNs, their results are included in
the experiment as a means of comparison.

CNN, regularized CNN with dropout, GRU, LSTM, and
EN are included in the experiment as a baseline for compar-
ing the results between single neural architectures and their
hybrid counterparts. In total, twelve neural architectures are
analyzed.

H. FEATURE EXTRACTION
Compared to scattering networks, RNNs, and EN, CNNs
boast several additional strengths: (1) there are a wide variety
of filters (random, supervised, and unsupervised filters) that
can be employed (2) there exists a variety of non-linearities
(rectified linear units, hyperbolic tangent, and logistic sig-
moid) (3) pooling separators (sub-sampling, average-pooling,
and max-pooling) can be applied and (4) these filters, non-
linearities, and pooling separators can be in different network
layers. With these additional features, CNNs have more cus-
tomization and flexibility than scattering networks, RNNs,
and EN.

Let Lp(Rd ) be the space of Lebesgue-measurable functions
f : Rd

→ C that satisfies ||f ||p := (
∫
Rd |f (x)|

pdx)1/p < ∞,
where p ∈ [ 1,∞) . Since semi-discrete frames can be inter-
preted as shift-invariant frames of a countable index 3n with
a continuous translation parameter, the following definitions
can be provided.

In the nth network layer for a CNN, a convolution with
atoms gλn ∈ L1(Rd ) ∩ L2(Rd ) of a semi-discrete Parseval
frame 9n := {TbIgλn }b∈Rd ,λn∈3n

for L2(Rd ) is employed
on a countable index set 3n, where Tb and Igλn are frame
coefficients outlined in [65] and the frame atoms gλn are
arbitrary. The semi-discrete frame 9n functions as a feature
extractor.

For n ∈ N, let Mn and Pn be Lipschitz-continuous oper-
ators where Mnf = Pnf = 0 for f = 0. Using the
previously defined semi-discrete frame 9n, the sequence
� = ((9n,Mn,Pn))n∈N is called a module-sequence.

Given the module-sequence � = ((9n,Mn,Pn))n∈N, the
feature extractor 9n, with �, maps L2(Rd ) to the feature
vector

8�(f ) :=
∞⋃
n=0

8n
�(f ), (12)

where 8n
�(f ) := {(U [q]f ) ∗ χn}q∈3n

1
,∀n ∈ N, U [·] is

the operator associated with the nth network layer, and the
function χn is the output-generating atom of the nth layer.
The set 8n

�(f ) corresponds to the features in the nth network
layer generated by function f .
The feature extractors obtained through the implemented

neural architectures use this feature-extracting mechanism
to store all features in the feature vectors 8�i (f ) before
classifying the biometric data analyzed.

IV. EXPERIMENT
The experiments were run with a NVIDIA Tesla P100, a
16-GB GPU computing processor. The NVIDIA Tesla P100
contains 3584 CUDA cores with a bandwidth of 720 GBps.
The experimental results follow a description of the used
datasets.

A. DATASETS
To ensure robustness of the proposed HNNs, three mul-
timodal datasets were analyzed: the MIT-BIH polysomno-
graphic dataset, the MIT CC original dataset, and the MIT
CC augmented dataset. These datasets include a variety of
sample lengths. In each dataset, the patient record contains
notes from cardiologists on the heartbeat locations. More
specifically, the weighted mean of the R-peak and S-peak of
an ECG is described as the heartbeat location. The individual
databases are expanded upon below.

1) MIT-BIH Polysomnographic Database
The MIT-BIH dataset contains four-, six-, and seven-
channel polysomnographic recordings that sum to over
80 hours worth of data [66]. Additionally, heart-
beat annotations, ECGs, EEGs, and respiration signals
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FIGURE 2. Sample 45 in the MIT-BIH polysomnographic database.

annotated with respect to sleep conditions are provided.
These multimodal recordings were obtained during
sleep for eighteen subjects. A LightWAVE visualiza-
tion of subject 45 from the MIT-BIH polysomno-
graphic dataset is provided [Fig. 2]. This sample was
selected to display the variety in available modalities
for each sample.

2) MIT Computing in Cardiology (CC) Database
The publicly available MIT CC database contains
200 patient records and a hidden test set with 210
records [67]. This database contains two datasets:
an original dataset and an augmented dataset. Both
datasets contain 100 training observations. Since the
augmented dataset does not have a fixed fiducial point
and the annotations were not generated from a spe-
cific physiological channel, this dataset provides a
greater challenge for the neural networks. Signals’
sampling frequencies vary between 250 and 360 Hz.

FIGURE 3. Sample 100 in the MIT CC database.

A LightWAVE visualization of sample 100 from the
MIT CC database is provided [Fig. 3]. This sam-
ple was selected to display the variety in available
modalities for each sample within the multimodal
database. Physician annotations that are recorded in
blue indicate a heartbeat. ECG, BP, EEG, SV, and SO2
represent the physiological signals for ECGs, BP, elec-
troencephalography, stroke volume and sulfur diox-
ide, respectively. Resp (nasal) and Resp (abdominal)
indicate signals for nasal respiration and abdominal
respiration, respectively.

B. EXPERIMENTAL RESULTS
The testing accuracies for the CNN, CNN-Dropout,
CNN-LSTM, and the proposed HNNs across fifty epochs for
all three datasets are displayed in Figures 4, 5, and 6. These
figures are included to reveal the effect that modality count

FIGURE 4. Testing accuracy on the MIT polysomnographic dataset.
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FIGURE 5. Testing accuracy on the MIT CC original dataset.

FIGURE 6. Testing accuracy on the MIT CC augmented dataset.

has on the learning of each implemented neural network.
When analyzing the testing accuracies for these neural net-
works, we compare only their best performance. The testing
accuracies are reported as percentages following each model
for the different datasets, where testing accuracy is defined as
the percentage of correctly detected heartbeats. A comparison
is made between each neural network’s detected heartbeats
and the physician-annotated heartbeats in each dataset.

Tables 1, 2, and 3 report the change in percentage points
for each model after dropping each modality in the three
datasets. In some cases, the performance of a model improves
when particular modalities are removed. This suggests that
several modalities contribute noisy and uncorrelated data,
since removing their impact on the network increases that
network’s predictability. However, several models reveal that
common physiological signals can improve the accuracy of
locating heartbeats. In Table 3, neural architectures that did
not experience a change in percentage points for dropped
modalities were removed.

The neural networks that reported the best accuracy on the
MIT-BIH Polysomnographic database contained convolution
layers. Namely, the CNN (97.63%), CNN-LSTM (97.62%),
CNN-EN (96.86%), and CNN-Dropout (96.19%) models
reported the highest accuracies on the polysomnographic test-
ing data. This indicates that the MIT-BIH data requires more
advanced feature extraction to obtain accurate results, which
is best satisfiedwith neural architectures that leverage the fea-
ture extraction of CNNs. Note that despite CNN-LSTM hav-
ing a higher accuracy than CNN at most epochs, CNN obtains
the highest accuracy at epoch 35. Although the best testing
accuracies were reported by the CNN and CNN-LSTM archi-
tectures, these models contained high variance in accuracy
when modalities were dropped, indicating a relatively heavy
reliance on ECG and BP readings. Additionally, the regular-
ized CNN-Dropout model displayed relatively high variance.

The CNN-ENmodel had comparable results with the CNN
and CNN-LSTM in terms of the best reported accuracy
while exhibiting less volatility. This is likely due to the
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TABLE 1. Change in percentage points for dropped modalities on the MIT polysomnographic dataset.

TABLE 2. Change in percentage points for dropped modalities on the MIT CC original dataset.

EN’s ability to adjust probability assessments while working
with the CNN, which would prove advantageous since the
MIT-BIH data requires a more rigorous treatment towards
feature extraction than analyzing a periodic rhythm. When
analyzing arrhythmia datasets, a high testing accuracy with
low variance is ideal; therefore, the results of CNN-EN are
comparable to the CNN and CNN-LSTM models, while
CNN-EN retains higher testing accuracy after modalities are
removed. The GRU-EN (94.59%), CNN-GRU-EN (94.87%),
and CNN-LSTM-EN (94.76%) models also reported stable
testing accuracies following the removal of modalities.

The MIT CC original dataset reported similar results to
the polysomnographic dataset. The CNN (98.91%), CNN-EN
(98.68%), CNN-Dropout (98.56%), and EN (98.31%)models
recorded the highest testing accuracy. Similar to the MIT-
BIH data, this dataset requires advanced feature extraction.
CNN-EN demonstrates less variance in testing accuracy than
a regularized CNN with comparable results, likely due to
the ability to adjust the probability vector outputted from
the CNN architecture. The models containing RNNs such
as the GRU-EN (95.56%) and CNN-GRU (94.86%) models
performed relatively worse than the other HNNs, indicating
that the MIT CC original dataset does not require a rigorous
periodic analysis of the physiological signals.

The most accurate models for the MIT CC augmented
dataset utilized an embracement layer for late fusion. The
CNN-EN (97.74%), EN (96.83%), CNN-GRU-EN (95.28%),
and LSTM-EN (95.23%) reported the best results, since the
EN architecture works well with a large number of modalities
(46 physiological signals). The neural architectures without
an EN layer failed to learn after the first epoch, since the
relatively large amount of modalities inhibited learning; each
of these neural architectures reported a 63.34% testing accu-
racy throughout the experiment, only utilizing ECG and BP
readings as inputs.

For the three datasets tested, ECG and BP recordings were
the most common physiological signals and have the largest
impact on the outcomes of the models. Tables 1, 2, and 3
report the change in percentage points of accuracy as certain
modalities are dropped from the input to the neural networks.

For the MIT polysomnographic dataset, the HNNs that
do not utilize EN were mostly impacted by the removal of
the ECG modality. After removing ECG signals from the
observations, the CNN, GRU, LSTM, CNN-Dropout, and
CNN-LSTM lost 51, 49, 39, 36, and 34 percentage points
of accuracy, respectively. The CNN-EN, GRU-EN, and EN
only lost 2, 1, and 1 percentage points, respectively, follow-
ing the removal of ECG signals. The neural architectures
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TABLE 3. Change in percentage points for dropped modalities on the MIT CC augmented dataset.

without an embracement layer lost themost percentage points
in accuracy because they failed to make use of the other
physiological signals. With EN, the proposed HNNs were
able to remain relatively accurate following the removal of
either the ECG or BP modality. The CNN-LSTM-EN and
CNN-GRU-EN architectures report little to no loss in per-
centage points for accuracy. The CNN-GRU and LSTM-EN
models report a 1 percentage point increase in accuracy
after removing ECG, indicating that these models better
predict heartbeat locations from BP than ECG recordings.
These findings indicate that the proposed HNNs and EN
outperform the state-of-the-art neural networks when com-
mon modalities are not present, displaying the robustness
of HNNs.

When BP signals are removed, CNN-EN barely
loses accuracy, whereas CNN, CNN-LSTM, CNN-GRU,

CNN-Dropout, GRU, and LSTM lose 35, 34, 30, 26,
23, and 13 percentage points, respectively. Additionally,
CNN-GRU-EN, CNN-LSTM-EN, LSTM-EN, GRU-EN, and
EN experience a loss of 42, 35, 32, 22, and 7 percent-
age points, respectively. The CNN-EN architecture remains
relatively accurate compared to the CNN-LSTM-EN and
CNN-GRU-EN architectures following the removal of the
BP modality because this dataset does not require a rig-
orous periodic analysis to be completed by the RNNs.
None of the HNNs that incorporate an embracement layer
lose any accuracy when dropping physiological signals
other than BP or ECG recordings, since they are able to
make use of each modality in detecting heartbeats. For the
polysomnographic dataset, CNN-EN provides comparable
testing accuracy to CNN, regularized CNN and CNN-LSTM
while providing much more robust accuracy following the
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removal of modalities. Therefore, in a messy arrhythmia
dataset, CNN-EN provides robust results while offering test-
ing accuracy that competes well with state-of-the-art neural
networks.

Within the MIT polysomnographic dataset, ECG, BP, and
nasal respiration appear to positively affect the networks’
testing accuracies, whereas EEG (O2-A1) and the summation
of respiration appear to negatively affect testing accuracies.
While most of the remaining physiological signals do not
greatly impact neural network performance, EEG (C4-A1)
provides either a positive or negative impact on testing accu-
racies depending on the tested neural architecture.

The MIT CC original dataset reports similar results to
the polysomnographic dataset. While CNN, CNN-EN, CNN-
Dropout, and EN provide the best testing accuracies, EN
and CNN-EN provide the most robust results when dropping
modalities. The HNNs that implement an embracement layer
do not lose accuracy when dropping more of the uncommon
physiological signals, as well. However, GRU-EN and CNN-
GRU-EN lose a significant amount of accuracy after drop-
ping BP or ECG signals, since the MIT CC original dataset
has longer periods of recordings that the GRU architecture
struggles to analyze. Thus, EN and CNN-EN report some
of the highest testing accuracies while providing modality
robustness.

For the MIT CC original dataset, the neural architectures
that use an embracement layer tend to perform better after
removing modalities, with the exception of BP and ECGs.
However, the neural networks without EN reported lower
testing accuracies following the removal of most modalities.
Thus, the proposed HNNs that utilize an embracement layer
report robust results following the removal of both common
and uncommon biometric signals. Within the MIT CC origi-
nal dataset, ECG, BP, nasal respiration, EEG, sulfur dioxide,
chest respiration, and abdomen respiration appear to posi-
tively affect the networks’ testing accuracies. Stroke volume,
EOG (right), and the summation of respiration appear to
negatively affect testing accuracies.

Since the neural architectures that did not incorporate EN
did not learn on the MIT CC augmented dataset, dropping
any modality would not affect their testing accuracy. There-
fore, their results report a 0% change and are excluded from
Table 3. It is likely that these neural architectures did not
learn because they only analyzed the ECG and BPmodalities,
which did not reveal additional information past the first
epoch. Relative to the other datasets, the CNN-EN, EN, and
CNN-GRU-EN performed well on the MIT CC augmented
dataset, only losing 4, 2, and 2 percentage points after drop-
ping ECG signals, respectively. This is likely due to the rela-
tively heavier reliance on the EN architecture over the CNNs
and RNNs, since this dataset contains a larger amount of
modalities. Since the removal of the ECGmodality negatively
impacts the accuracy of almost every neural network on each
dataset, ECG is a strong indicator for heartbeat location;
thus, ECGs should be considered in multimodal heartbeat
detection when available.

Both LSTM-EN and CNN-LSTM-EN did not experi-
ence a change in accuracy after dropping ECG signals,
revealing that they make use of some of the rather uncom-
mon physiological signals. Therefore, if ECG recordings
experience block-wise missing data in arrhythmia datasets
that contain a large amount of modalities, the proposed
LSTM-EN and CNN-LSTM-EN neural networks provide
accurate and robust results. The GRU-EN model suffers a
loss of 29 percentage points following the removal of BP
recordings while improving by 1 percentage point after drop-
ping ECG signals. This finding indicates that the GRU-EN
model relied more on BP than ECG recordings to locate
heartbeats.

Additionally, GRU-ENwas the only model that gained any
percentage points in accuracy after dropping a physiological
signal that was not BP or ECG, which can be attributed to the
inherent noise in some of the more uncommon physiological
signals. Based on testing accuracy and modality robustness,
CNN-EN, EN, and CNN-GRU-EN appear to best predict
heartbeat location on the MIT CC augmented dataset.

On the augmented dataset, BP provides a strong positive
impact on the networks’ testing accuracies, whereas ECG
affects accuracies relatively less. Several physiological sig-
nals negatively affect network performance for each neural
architecture: nasal respiration, EEG (C3-O1), EMG, abdom-
inal respiration, EOG (right), EEG (C4-A1), stroke volume,
sulfur dioxide, ECG II, abdomen respiration, and ECG Lead
AVF. The remaining physiological signals have either little
or no effect on testing accuracies. In the two other datasets,
nasal respiration, EEG (C3-O1), and abdomen respiration
positively affected testing accuracies. This discrepancy may
be due to the amount of noise inherent in this dataset since
there are more biometric signals present.

V. CONCLUSION AND FUTURE WORK
Many biometric datasets contain more than two physiological
signals. To make full use of each dataset, all modalities must
be considered. As seen in the experimental results, not every
modality will positively contribute to predictive accuracy.
However, some modalities, which have been neglected up
until this point by use of bimodal analysis, positively con-
tribute to the predictive accuracy of many commonly used
neural networks.

This finding reveals room for improvement in many state-
of-the-art multimodal approaches that only analyze two
modalities. Regarding arrhythmia studies, most researchers
only analyze BP and ECGs. However, other physiological
signals such as nasal respiration, EEGs, and sulfur dioxide
can positively contribute to predictive accuracy when imple-
menting several neural architectures.

As indicated throughout Tables 1-3, the proposed HNNs
do not necessarily outperform the state-of-the-art neural net-
works when analyzing complete datasets, although the HNNs
do report similar accuracies. However once confronted with
missing data or modalities, the commonly used CNN, LSTM,
CNN-LSTM, and GRU lose a significant amount of accuracy.
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In comparison, the proposed HNNs report robust results,
losing a much smaller amount of accuracy with datasets
containing missing data.

The CNN-EN provides the most robust testing accuracy of
all of the models implemented on theMIT Polysomnographic
Database. Since EN is capable of robustly handling missing
data and CNNs read periodically sampled data very well, the
CNN-EN borrows the strengths from each individual archi-
tecture. This model performed particularly well on messier,
noisier data compared to the other tested architectures. For
cleaner, complete datasets, such as the MIT CC original
dataset, CNN with regularization appears to provide suffi-
cient accuracy; however, CNN-EN boasted similar testing
accuracy, while losing minimal accuracy following dropped
modalities.

For the MIT CC original dataset, EN and CNN-EN pro-
vide higher accuracies while mitigating the volatility of
their testing accuracies. Additionally, these models experi-
ence a minimal drop in accuracy after removing common
and uncommon physiological signals. Therefore, EN and
CNN-EN are ideal for arrhythmia datasets that are sparse or
abundant in modalities.

Since the MIT CC augmented dataset contained up to
46 modalities for each subject, most models failed to learn.
However, the HNNs that incorporated EN continued to learn
throughout the fifty epochs of the experiment. EN, CNN-EN,
and CNN-GRU-EN provided the most robust results, while
providing high accuracies for heartbeat locations.

Future research directions may include implementing a
multimodal fusion architecture prior to feature extraction for
any of the tested neural architectures, through the use of
adaptive, sensor, tensor, or memory fusion networks. Addi-
tionally, one can further test the efficacy of the proposed
HNNs on other biometric datasets with a variety in size and
dimensionality.

It is common that a patient hasmultiplemissingmodalities.
Therefore, an experiment analyzing the robustness of the
state-of-the-art neural architectures and the proposed HNNs
on biometric datasets when multiple modalities are dropped
may reveal more interesting findings.

Since the EN and CNN-EN neural networks can be imple-
mented on messier datasets with missing modalities, previ-
ously collected databases that were overlooked due tomissing
data can be revisited to gain new insights.

If one could identify missing block-wise data and report
these locations to the HNNs, testing accuracies may improve.
By telling the HNNs that incorporate EN which modalities
are missing, testing accuracy may further improve. A more
computationally expensive method for improving accuracy
could be individually training a neural network on each
modality and using their outputs as inputs for an embraced
layer.
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